Rajnish Gupta

Publication Details

  • 15S-hydroxyeicosatetraenoic acid activates peroxisome proliferator-activated receptor gamma and inhibits proliferation in PC3 prostate carcinoma cells CANCER RESEARCH Shappell, S. B., Gupta, R. A., Manning, S., Whitehead, R., Boeglin, W. E., Schneider, C., CASE, T., Price, J., Jack, G. S., Wheeler, T. M., Matusik, R. J., Brash, A. R., DuBois, R. N. 2001; 61 (2): 497-503


    15-Lipoxygenase (15-LOX)-2 is expressed in benign prostate secretory cells and benign prostate produces 15S-hydroxyeicosatetraenoic acid (15S-HETE) from exogenous arachidonic acid (AA). In contrast, 15S-LOX-2 and 15S-HETE formation are reduced in prostate carcinoma (Pca). The mechanisms whereby reduced 15-LOX-2 may contribute to Pca development or progression are not known. We investigated the expression of peroxisome proliferator-activated receptor (PPAR) gamma in benign and malignant prostate tissues and the ability of 15S-HETE to activate PPARgamma-dependent transcription and modulate proliferation of the Pca cell line PC3. In contrast to benign prostate and similar to most Pca tissues, 15-LOX-2 mRNA was not detected in PC3 cells, and they did not produce detectable 15-HETE from [14C]AA. By reverse transcription-PCR, PPARgamma mRNA was present in 18 of 18 benign and 9 of 9 tumor specimens. The PPARgamma ligand BRL 49653 and 15S-HETE caused a dose-dependent inhibition of PC3 proliferation in a 14-day soft agar colony-forming assay (IC50 of 3 and 30 microM, respectively). 15S-HETE (10 microM) caused greater inhibition than 10 microM 15R-HETE. At 3 days, BRL 49653 and 15S-HETE caused a slight increase in cells in G0-G1 and a corresponding decrease in cells in S phase. In PC3 cells transiently transfected with a luciferase reporter linked to a PPAR response element, 1 microM BRL 49653 and 10 microM 15S-HETE caused approximately threefold and greater than twofold induction of PPAR-dependent transcription, respectively. By quantitative real-time reverse transcription-PCR and Northern analysis, 3-day treatment with BRL 49653 and 15S-HETE caused a reduction of PPARgamma expression but a marked up-regulation of the PPAR response element containing adipocyte type fatty acid binding protein. These results support the hypothesis that 15-LOX-2-derived 15S-HETE may constitute an endogenous ligand for PPARgamma in the prostate and that loss of this pathway by reduced expression of 15-LOX-2 may contribute to increased proliferation and reduced differentiation in prostate carcinoma.

    View details for Web of Science ID 000166819800019

    View details for PubMedID 11212240

Stanford Medicine Resources:

Footer Links: