Steven Mcintire

Publication Details

  • The Dystrophin Complex Controls BK Channel Localization and Muscle Activity in Caenorhabditis elegans PLOS GENETICS Kim, H., Pierce-Shimomura, J. T., Oh, H. J., Johnson, B. E., Goodman, M. B., McIntire, S. L. 2009; 5 (12)

    Abstract:

    Genetic defects in the dystrophin-associated protein complex (DAPC) are responsible for a variety of pathological conditions including muscular dystrophy, cardiomyopathy, and vasospasm. Conserved DAPC components from humans to Caenorhabditis elegans suggest a similar molecular function. C. elegans DAPC mutants exhibit a unique locomotory deficit resulting from prolonged muscle excitation and contraction. Here we show that the C. elegans DAPC is essential for proper localization of SLO-1, the large conductance, voltage-, and calcium-dependent potassium (BK) channel, which conducts a major outward rectifying current in muscle under the normal physiological condition. Through analysis of mutants with the same phenotype as the DAPC mutants, we identified the novel islo-1 gene that encodes a protein with two predicted transmembrane domains. We demonstrate that ISLO-1 acts as a novel adapter molecule that links the DAPC to SLO-1 in muscle. We show that a defect in either the DAPC or ISLO-1 disrupts normal SLO-1 localization in muscle. Consistent with observations that SLO-1 requires a high calcium concentration for full activation, we find that SLO-1 is localized near L-type calcium channels in muscle, thereby providing a mechanism coupling calcium influx with the outward rectifying current. Our results indicate that the DAPC modulates muscle excitability by localizing the SLO-1 channel to calcium-rich regions of C. elegans muscle.

    View details for DOI 10.1371/journal.pgen.1000780

    View details for Web of Science ID 000273469700030

    View details for PubMedID 20019812

Stanford Medicine Resources:

Footer Links: