David N. Cornfield

Publication Details

  • Fetal rabbit pulmonary artery smooth muscle cell response to ryanodine is developmentally regulated AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY Porter, V. A., Reeve, H. L., Cornfield, D. N. 2000; 279 (4): L751-L757


    To study developmental changes in intracellular calcium handling in pulmonary artery smooth muscle cells (PASMCs), cells were isolated from distal and proximal pulmonary arteries from rabbits at different developmental stages: juvenile (4-6 wk old), newborn (<48 h), and full-term fetal. Isolated PASMCs were studied using the calcium-sensitive dye fura 2. Cells from each age group responded to caffeine with an increase in calcium; however, ryanodine (50 microM) only increased calcium in fetal distal PASMCs. The ryanodine-induced increase was due to influx of extracellular calcium because it was blocked by removal of extracellular calcium or by diltiazem. The calcium-sensitive potassium (K(Ca)) channel blocker iberiotoxin produced a transient increase in calcium in the fetal distal PASMCs, which could be inhibited by prior application of ryanodine. Conversely, the ryanodine response was inhibited if iberiotoxin was given first. With the use of electrophysiology and confocal microscopy, fetal PASMCs were shown to exhibit spontaneous transient outward currents and calcium sparks, respectively. These observations suggest that ryanodine-sensitive release of calcium from the sarcoplasmic reticulum and K(Ca) channels act together to control intracellular calcium only in fetal distal PASMCs.

    View details for Web of Science ID 000089467300018

    View details for PubMedID 11000136

Stanford Medicine Resources:

Footer Links: