George Yang

Publication Details

  • Cell Permeant Peptide Analogues of the Small Heat Shock Protein, HSP20, Reduce TGF-beta 1-Induced CTGF Expression in Keloid Fibroblasts JOURNAL OF INVESTIGATIVE DERMATOLOGY Lopes, L. B., Furnish, E. J., Komalavilas, P., Flynn, C. R., Ashby, P., Hansen, A., Ly, D. P., Yang, G. P., Longaker, M. T., Panitch, A., Brophy, C. M. 2009; 129 (3): 590-598

    Abstract:

    A growing body of evidence suggests the involvement of connective tissue growth factor (CTGF) in the development and maintenance of fibrosis and excessive scarring. As the expression of this protein requires an intact actin cytoskeleton, disruption of the cytoskeleton represents an attractive strategy to decrease CTGF expression and, consequently, excessive scarring. The small heat-shock-related protein (HSP20), when phosphorylated by cyclic nucleotide signaling cascades, displaces phospho-cofilin from the 14-3-3 scaffolding protein leading to activation of cofilin as an actin-depolymerizing protein. In the present study, we evaluated the effect of AZX100, a phosphopeptide analogue of HSP20, on transforming growth factor-beta-1 (TGF-beta1)-induced CTGF and collagen expression in human keloid fibroblasts. We also examined the effect of AZX100 on scar formation in vivo in dermal wounds in a Siberian hamster model. AZX100 decreased the expression of CTGF and type I collagen induced by TGF-beta1, endothelin, and lysophosphatidic acid. Treatment with AZX100 decreased stress fiber formation and altered the morphology of human dermal keloid fibroblasts. In vivo, AZX100 significantly improved collagen organization in a Siberian hamster scarring model. Taken together, these results suggest the potential use of AZX100 as a strategy to prevent excessive scarring and fibrotic disorders.

    View details for DOI 10.1038/jid.2008.264

    View details for Web of Science ID 000263569500011

    View details for PubMedID 18787533

Stanford Medicine Resources:

Footer Links: