Stuart Goodman

Publication Details

  • Induction of interleukin-6 release in human osteoblast-like cells exposed to titanium particles in vitro CALCIFIED TISSUE INTERNATIONAL Shida, J., Trindade, M. C., Goodman, S. B., Schurman, D. J., Smith, R. L. 2000; 67 (2): 151-155

    Abstract:

    Orthopaedic wear debris induces release of bone-resorbing factors from macrophages and fibroblasts. However, the extent to which elemental metallic particles induce bone cells to express factors contributing to implant loosening remains unclear. This study showed that exposure of MG-63 osteoblast-like cells to titanium particles at a concentration of 0.30% v/v resulted in a 15-fold increase in IL-6 release into the culture medium after 24 hours, when compared with cells without particles. Northern blots revealed that exposure of MG-63 cells to titanium particles at a concentration of 0.30% v/v for 24 hours increased IL-6 mRNA signal levels by 9.6-fold, when compared with control cultures. Pretreatment of MG-63 cells with cytochalasin B prevented the particle-induced increase of IL-6 expression but did not alter the basal level of IL-6 release from cells cultured in the absence of particles. The protein kinase C inhibitor, H7, and the serine/threonine kinase inhibitor, genistein, abolished the particle-induced increase in IL-6 release at a concentration of 100 microM for each compound. In contrast, an inhibitor of protein kinase A, HA1004, had no effect on the particle-induced increase in IL-6 release. The transcription factors, nuclear factor IL-6 and nuclear factor kappa B, translocated into the nucleus within 1 hour of particle exposure. This study showed that osteoblast-like cells respond to titanium particles through increased expression of the proinflammatory cytokine, IL-6, in a process requiring phagocytosis and intracellular signaling pathways. These results suggest that osteoblasts play a direct role in implant loosening because of localized release of soluble mediators such as interleukin-6.

    View details for Web of Science ID 000088387400010

    View details for PubMedID 10920220

Stanford Medicine Resources:

Footer Links: