Stuart Goodman

Publication Details

  • Continuous Intramedullary Polymer Particle Infusion Using a Murine Femoral Explant Model JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS Ortiz, S. G., Ma, T., Regula, D., Smith, R. L., Goodman, S. B. 2008; 87B (2): 440-446

    Abstract:

    In vitro models are important investigative tools in understanding the biological processes involved in wear-particle-induced chronic inflammation and periprosthetic osteolysis. In the clinical scenario, particles are produced and delivered continuously over extended periods of time. Previously, we quantified the delivery of both polystyrene and polyethylene particles over 2- and 4-week time periods using osmotic pumps and collection tubes. In the present study, we used explanted mice femora in organ culture and showed that continuous intramedullary delivery of submicron-sized polymer particles using osmotic pumps is feasible. Furthermore, infusion of 2.60 x 10(11) particles per mL (intermediate concentration) of ultrahigh molecular weight polyethylene (UHMWPE) for 2 weeks and 8.06 x 10(11) particles per mL (high concentration) UHMWPE for 4 weeks both yielded significantly higher scores for bone loss when compared with controls in which only mouse serum was infused.

    View details for DOI 10.1002/jbm.b.31122

    View details for Web of Science ID 000260355000017

Stanford Medicine Resources:

Footer Links: