Lawrence Steinman

Publication Details

  • Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation NATURE CELL BIOLOGY Johansson, C. B., Youssef, S., Koleckar, K., Holbrook, C., Doyonnas, R., Corbel, S. Y., Steinman, L., Rossi, F. M., Blau, H. M. 2008; 10 (5): 575-583


    Transplanted bone marrow-derived cells (BMDCs) have been reported to fuse with cells of diverse tissues, but the extremely low frequency of fusion has led to the view that such events are biologically insignificant. Nonetheless, in mice with a lethal recessive liver disease (tyrosinaemia), transplantation of wild-type BMDCs restored liver function by cell fusion and prevented death, indicating that cell fusion can have beneficial effects. Here we report that chronic inflammation resulting from severe dermatitis or autoimmune encephalitis leads to robust fusion of BMDCs with Purkinje neurons and formation of hundreds of binucleate heterokaryons per cerebellum, a 10-100-fold higher frequency than previously reported. Single haematopoietic stem-cell transplants showed that the fusogenic cell is from the haematopoietic lineage and parabiosis experiments revealed that fusion can occur without irradiation. Transplantation of rat bone marrow into mice led to activation of dormant rat Purkinje neuron-specific genes in BMDC nuclei after fusion with mouse Purkinje neurons, consistent with nuclear reprogramming. The precise neurological role of these heterokaryons awaits elucidation, but their frequency in brain after inflammation is clearly much higher than previously appreciated.

    View details for DOI 10.1038/ncb1720

    View details for Web of Science ID 000255502400014

    View details for PubMedID 18425116

Stanford Medicine Resources:

Footer Links: