Vinicio de Jesus Perez MD

Publication Details

  • An antiproliferative BMP-2/PPAR gamma/apoE axis in human and murine SMCs and its role in pulmonary hypertension JOURNAL OF CLINICAL INVESTIGATION Hansmann, G., de Jesus Perez, V. A., Alastalo, T., Alvira, C. M., Guignabert, C., Bekker, J. M., Schellong, S., Urashima, T., Wang, L., Morrell, N. W., Rabinovitch, M. 2008; 118 (5): 1846-1857

    Abstract:

    Loss-of-function mutations in bone morphogenetic protein receptor II (BMP-RII) are linked to pulmonary arterial hypertension (PAH); the ligand for BMP-RII, BMP-2, is a negative regulator of SMC growth. Here, we report an interplay between PPARgamma and its transcriptional target apoE downstream of BMP-2 signaling. BMP-2/BMP-RII signaling prevented PDGF-BB-induced proliferation of human and murine pulmonary artery SMCs (PASMCs) by decreasing nuclear phospho-ERK and inducing DNA binding of PPARgamma that is independent of Smad1/5/8 phosphorylation. Both BMP-2 and a PPARgamma agonist stimulated production and secretion of apoE by SMCs. Using a variety of methods, including short hairpin RNAi in human PASMCs, PAH patient-derived BMP-RII mutant PASMCs, a PPARgamma antagonist, and PASMCs isolated from PPARgamma- and apoE-deficient mice, we demonstrated that the antiproliferative effect of BMP-2 was BMP-RII, PPARgamma, and apoE dependent. Furthermore, we created mice with targeted deletion of PPARgamma in SMCs and showed that they spontaneously developed PAH, as indicated by elevated RV systolic pressure, RV hypertrophy, and increased muscularization of the distal pulmonary arteries. Thus, PPARgamma-mediated events could protect against PAH, and PPARgamma agonists may reverse PAH in patients with or without BMP-RII dysfunction.

    View details for DOI 10.1172/JCI32503

    View details for Web of Science ID 000255490100028

    View details for PubMedID 18382765

Stanford Medicine Resources:

Footer Links: