Geoffrey Kerchner

Publication Details

  • Zinc-induced neuronal death in cortical neurons CELLULAR AND MOLECULAR BIOLOGY Lobner, D., Canzoniero, L. M., Manzerra, P., Gottron, F., Ying, H., Knudson, M., Tian, M., Dugan, L. L., Kerchner, G. A., Sheline, C. T., Korsmeyer, S. J., Choi, D. W. 2000; 46 (4): 797-806

    Abstract:

    Although Zn2+ is normally stored and released in the brain, excessive exposure to extracellular Zn2+ can be neurotoxic. The purpose of the present study was to determine the type of neuronal cell death, necrosis versus apoptosis, induced by Zn2+ exposure. Addition of 10-50 microM ZnCl2 to the bathing medium of murine neuronal and glial cell cultures induced, over the next 24 hrs., Zn2+-concentration-dependent neuronal death; some glial death also occurred with Zn2+ concentrations above 30 microM. The neuronal death induced by 20 microM Zn2+ was characterized by coarse chromatin condensation, the formation of apoptotic bodies, and internucleosomal DNA fragmentation. It was attenuated in cortical cell cultures prepared from mice null for the bax gene, and by the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-CH2F (ZVAD, 100 microM), but not by the NMDA receptor antagonist, D-2-amino-5-phosphonovalerate (D-APV, 200 microM ). In contrast, the neuronal death induced by 50 microM Zn2+ was characterized by plasma membrane disruption and random DNA fragmentation; this death was attenuated by D-APV, but exhibited little sensitivity to ZVAD or deletion of bax. These results suggest that Zn2+ can induce cell death with characteristics of either apoptosis or necrosis, depending on the intensity of the Zn2+ exposure.

    View details for Web of Science ID 000087633700010

    View details for PubMedID 10875441

Stanford Medicine Resources:

Footer Links: