Michael Longaker

Publication Details

  • Analysis of the material properties of early chondrogenic differentiated adipose-derived stromal cells (ASC) using an in vitro three-dimensional micromass culture system BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS Xu, Y., Balooch, G., Chiou, M., Bekerman, E., Ritchie, R. O., Longaker, M. T. 2007; 359 (2): 311-316

    Abstract:

    Cartilage is an avascular tissue with only a limited potential to heal and chondrocytes in vitro have poor proliferative capacity. Recently, adipose-derived stromal cells (ASC) have demonstrated a great potential for application to tissue engineering due to their ability to differentiate into cartilage, bone, and fat. In this study, we have utilized a high density three-dimensional (3D) micromass model system of early chondrogenesis with ASC. The material properties of these micromasses showed a significant increase in dynamic and static elastic modulus during the early chondrogenic differentiation process. These data suggest that the 3D micromass culture system represents an in vitro model of early chondrogenesis with dynamic cell signaling interactions associated with the mechanical properties of chondrocyte differentiation.

    View details for DOI 10.1016/j.bbrc.2007.05.098

    View details for Web of Science ID 000247494400020

    View details for PubMedID 17543281

Stanford Medicine Resources:

Footer Links: