Michael Longaker

Publication Details

  • Isolation and characterization of posterofrontal/sagittal suture mesenchymal cells in vitro PLASTIC AND RECONSTRUCTIVE SURGERY Xu, Y., Malladi, P., Chiou, M., Longaker, M. T. 2007; 119 (3): 819-829


    Craniosynostosis, the premature fusion of cranial sutures, affects one in 2500 children. In the mouse, the posterofrontal suture is programed to fuse postnatally, but the adjacent sagittal suture remains patent throughout life. To study the cellular process of suture fusion, the authors isolated and studied suture-derived mesenchymal cells.Skulls were harvested from 80 mice (2 to 5 days old), and posterofrontal and sagittal sutures were dissected meticulously. Suture mesenchymal tissue was separated from the underlying dura mater and overlying pericranium and cultured in growth media. After the cells migrated from the explant tissues, the morphologies of the two cell populations were studied carefully, and quantitative real-time polymerase chain reaction was performed to evaluate gene expression.Both posterofrontal and sagittal cells exhibited highly heterogeneous morphologies, and the posterofrontal cells migrated faster than the sagittal cells. Accordingly, growth factors such as transforming growth factor-beta1 and fibroblast growth factor (FGF)-2 were expressed significantly more highly in posterofrontal compared with sagittal suture mesenchymal cells. In contrast, FGF receptor 2 and FGF-18 were expressed significantly more in sagittal than in posterofrontal suture cells. Importantly, bone morphogenic protein-3, the only osteogenic inhibitor in the bone morphogenic protein family, and noggin, a bone morphogenic protein antagonist, were expressed significantly more in sagittal than in posterofrontal suture cells, suggesting a possible mechanism of suture patency.To the authors' knowledge, this is the first analysis of mouse suture-derived mesenchymal cells. The authors conclude that isolation of suture-derived mesenchymal cells will provide a useful in vitro system with which to study the mechanisms underlying suture biology.

    View details for DOI 10.1097/01.prs.0000255540.91987.a0

    View details for Web of Science ID 000244438700007

    View details for PubMedID 17312483

Stanford Medicine Resources:

Footer Links: