Heike Daldrup-Link

Publication Details

  • T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning EUROPEAN RADIOLOGY Simon, G. H., Bauer, J., Saborovski, O., Fu, Y. J., Corot, C., Wendland, M. F., Daldrup-Link, H. E. 2006; 16 (3): 738-745

    Abstract:

    In this study we evaluated the effects of intracellular compartmentalization of the ultrasmall superparamagnetic iron oxide (USPIO) ferumoxtran-10 on its proton T1 and T2 relaxivities at 1.5 and 3T. Monocytes were labeled with ferumoxtran-10 by simple incubation. Decreasing quantities of ferumoxtran-10-labeled cells (2.5x10(7)-0.3x10(7) cells/ml) and decreasing concentrations of free ferumoxtran-10 (without cells) in Ficoll solution were evaluated with 1.5 and 3T clinical magnetic resonance (MR) scanners. Pulse sequences comprised axial spin echo (SE) sequences with multiple TRs and fixed TE and SE sequences with fixed TR and increasing TEs. Signal intensity measurements were used to calculate T1 and T2 relaxation times of all samples, assuming a monoexponential signal decay. The iron content in all samples was determined by inductively coupled plasma atomic emission spectrometry and used for calculating relaxivities. Measurements at 1.5T and 3T showed higher T1 and T2 relaxivity values of free extracellular ferumoxtran-10 as opposed to intracellularly compartmentalized ferumoxtran-10, under the evaluated conditions of homogeneously dispersed contrast agents/cells in Ficoll solution and a cell density of up to 2.5x10(7) cells/ml. At 3T, differences in T1-relaxivities between intra- and extracellular USPIO were smaller, while differences in USPIO T2-relaxivities were similar compared with 1.5T. In conclusion, cellular compartmentalization of ferumoxtran-10 changes proton relaxivity.

    View details for DOI 10.1007/s00330-005-0031-2

    View details for Web of Science ID 000235268900023

    View details for PubMedID 16308692

Stanford Medicine Resources:

Footer Links: