William J. Maloney, MD

Publication Details

  • Interleukin-4 inhibits granulocyte-macrophage colony-stimulating factor, interleukin-6, and tumor necrosis factor-alpha expression by human monocytes in response to polymethylmethacrylate particle challenge in vitro Trindade, M. C., Nakashima, Y., Lind, M., Sun, D. H., Goodman, S. B., Maloney, W. J., Schurman, D. J., Smith, R. L. JOHN WILEY & SONS INC. 1999: 797-802

    Abstract:

    The outcome of total joint arthroplasty is determined by biological events at the bone-implant interface. Macrophages phagocytose implant or wear debris at the interface and release proinflammatory mediators such as interleukins 1 and 6, tumor necrosis factor-alpha, and prostaglandin E2. These mediators are thought to contribute to the resorption of periprosthetic bone. Previous studies of tissues harvested from the bone-implant interface of failed orthopaedic implants demonstrated a possible role for two other cytokines, granulocyte-macrophage colony-stimulating factor and interleukin-4. The present study examined the effects of in vitro challenge with polymethylmethacrylate particles on the expression of granulocyte-macrophage colony-stimulating factor by primary human monocytes/macrophages and the role of interleukin-4 in regulating this expression. The polymethylmethacrylate particles caused a dose-dependent release of granulocyte-macrophage colony-stimulating factor at 48 hours. This release was accompanied by increased expression of interleukins 6 and 1beta and tumor necrosis factor-alpha. Release of the lysosomal enzyme hexosaminidase also increased in response to the particles. Interleukin-4 inhibited the expression of granulocyte-macrophage colony-stimulating factor, interleukin-6, and tumor necrosis factor-alpha at 48 hours in a dose-dependent manner. The data presented in this study confirm the hypothesis that interleukin-4 downregulates particle-induced activation of macrophages, as demonstrated by the decreased release of proinflammatory mediators.

    View details for Web of Science ID 000084603300001

    View details for PubMedID 10632444

Stanford Medicine Resources:

Footer Links: