Gerald Berry

Publication Details

  • Differential cardioprotective/cardiotoxic effects mediated by ss-adrenergic receptor subtypes AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY Bernstein, D., Fajardo, G., Zhao, M. M., Urashima, T., Powers, J., Berry, G., Kobilka, B. K. 2005; 289 (6): H2441-H2449

    Abstract:

    Recent data suggest that beta-adrenergic receptor subtypes couple differentially to signaling pathways regulating cardiac function vs. cardiac remodeling. To dissect the roles of beta1- vs. beta2-receptors in the pathogenesis of cardiomyopathy, doxorubicin was administered to beta1, beta2, and beta1/beta2 knockout (-/-) and wild-type mice. Expression and activation of MAPKs were measured. Wild-type and beta1-/- mice showed no acute cardiovascular effects, whereas beta2-/- mice all died within 30 min. The additional deletion of the beta1-receptor (beta1/beta2-/-) totally rescued this toxicity. beta2-/- mice developed decreased contractile function, hypotension, QTc prolongation, and ST segment changes and a 20-fold increase in p38 MAPK activity not seen in the other genotypes. The MAPK inhibitor SB-203580 rescued beta2-/- mice from this acute toxicity. The enhanced toxicity in beta2-/- mice was also recapitulated in wild-type mice with the beta2-selective antagonist ICI-118,551, although the rescue effect of the beta1-deletion was not recapitulated using the beta1-selective antagonist metoprolol or the nonselective beta-antagonist propranolol. These data suggest that beta2-adrenergic receptors play a cardioprotective role in the pathogenesis of cardiomyopathy, whereas beta1-adrenergic receptors mediate at least some of the acute cardiotoxicity of anthracyclines. Differential activation of MAPK isoforms, previously shown in vitro to regulate beta-agonist as well as doxorubicin cardiotoxicity, appears to play a role in mediating the differential effects of these beta-adrenergic receptor subtypes in vivo.

    View details for DOI 10.1152/ajpheart.00005.2005

    View details for Web of Science ID 000233176600023

    View details for PubMedID 16040722

Stanford Medicine Resources:

Footer Links: