F Sommer

Publication Details

  • Estimation of renal extraction fraction based on postcontrast venous and arterial differential T-1 values: An error analysis MAGNETIC RESONANCE IN MEDICINE Levin, Y. S., Chow, L. C., Pec, N. J., Sommer, F. G., Spielman, D. M. 2005; 54 (2): 309-316

    Abstract:

    An error analysis for quantifying single kidney extraction fraction (EF) via differential T1 measurements in the renal vein (RV) and renal artery (RA) is presented. Sources of error include blood flow effects, the effect of a short repetition time (TR), and the impact of uncertainties in the T1 estimates on the final EF calculations. Blood flow effects were investigated via simulation. For a range of blood velocities in the renal vein that may be found in kidney disease, incomplete refreshment of blood between readouts results in significant errors in T1 estimation. For a .5-cm slice, 110-ms sampling interval, and T1 of 600 ms, T1 estimation to within 5% of true T1 requires an average through-plane velocity of 6.75 cm/s for parabolic flow, and 3.5 cm/s for plug flow. Improvement can be achieved by accurately estimating the fraction of blood that has not refreshed between readouts (f(old)), while the quality of the T1 estimate varies with the accuracy of f(old) estimation. Shortening of the TR was investigated using phantom and in vivo studies. T1 was estimated to within 3% of the true value on phantoms, and within 5% of the true value for flowing blood for TR = 2T1. The estimated EF is shown to be very sensitive to the difference between T(1RA) and T(1RV). To achieve 10% or 20% uncertainty in the EF estimate, T1 in the renal vein and renal artery must be estimated to within approximately 1% or 2%. Because of limitations on measurement accuracy and precision, this method appears to be impractical at this time.

    View details for Web of Science ID 000230765700008

    View details for PubMedID 16032662

Stanford Medicine Resources:

Footer Links: