Christopher Beaulieu M.D., Ph.D.

Publication Details

  • Driven equilibrium magnetic resonance imaging of articular cartilage: Initial clinical experience JOURNAL OF MAGNETIC RESONANCE IMAGING Gold, G. E., Fuller, S. E., Hargreaves, B. A., Stevens, K. J., Beaulieu, C. F. 2005; 21 (4): 476-481

    Abstract:

    To evaluate three-dimensional driven equilibrium Fourier transform (3D-DEFT) for image quality and detection of articular cartilage lesions in the knee.We imaged 104 consecutive patients with knee pain with 3D-DEFT and proton density (PD-FSE) and T2-weighted (T2-FSE) fast spin echo. Twenty-four went on to arthroscopy. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) efficiency were measured. Subjective image quality, fat suppression, and cartilage thickness visibility were assessed. Cartilage lesions on 3D-DEFT and T2-FSE were compared with findings outlined in operative reports.SNR efficiency was higher for 3D-DEFT and PD-FSE than for T2-FSE (P < 0.02). 3D-DEFT and PD-FSE showed superior cartilage thickness visibility compared with T2-FSE (P < 0.02). T2-FSE showed better fat suppression and fewer image artifacts than 3D-DEFT (P < 0.04). 3D-DEFT had similar sensitivity and similar specificity for cartilage lesions compared with PD-FSE and T2-FSE.3D-DEFT provides excellent synovial fluid-to-cartilage contrast while preserving signal from cartilage, giving this method a high cartilage SNR. 3D-DEFT shows the full cartilage thickness better than T2-FSE. T2-FSE had superior fat saturation and fewer artifacts than 3D-DEFT. Overall, 3D-DEFT requires further technical development, but is a promising method for imaging articular cartilage.

    View details for DOI 10.1002/jhmi.20276

    View details for Web of Science ID 000228029900022

    View details for PubMedID 15779031

Stanford Medicine Resources:

Footer Links: