John W. Farquhar, M.D.

Publication Details

  • Endogenous triglyceride turnover in liver and plasma of the dog. Journal of lipid research GROSS, R. C., Eigenbrodt, E. H., Farquhar, J. W. 1967; 8 (2): 114-125

    Abstract:

    Radioactive glycerol and S(f) > 20 lipoproteins labeled with it were used to study turnover of plasma S(f) > 20 and hepatic triglyceride in anesthetized dogs. From specific activity-time curves of these lipids after an injection of labeled material, a tentative and incomplete model for the kinetics of endogenous hepatic and plasma triglyceride was defined and partially validated. Pool sizes and turnover rates of triglyceride in liver and S(f) > 20 lipoproteins of plasma were then calculated in seven dogs. Hepatic triglyceride was composed of two compartments: 60% metabolically inert and 40% metabolically active. Although communication between these hepatic compartments surely occurred during the time course of these studies, it was not sufficient to be detected by our present methods. The metabolically active compartment turned over as a single pool but with two destinations: a quite variable proportion (an average of 61%) was secreted into plasma as S(f) > 20 triglyceride, and an average of 39% was presumably hydrolyzed within the liver. The fractional turnover rate of plasma S(f) > 20 triglyceride was 2-3 times that of hepatic triglyceride. This finding, and the parallel decline of specific activities of plasma S(f) > 20 and liver triglyceride after injection of labeled glycerol, confirm the rate-determining role of hepatic triglyceride. In this respect the dog differs importantly from man. Though turnover rates of plasma S(f) > 20 triglyceride fell in the same range in men and dogs, the relationship of turnover rate to plasma concentration of this lipid differed greatly between them. The model for the dog does resemble that previously reported for man, however, in the lack of major recycling of intact plasma triglyceride between the liver and plasma. Lack of such recycling, however, does not exclude return of plasma triglyceride into a hepatic triglyceride sink. The amount of such unidirectional uptake, if any, could not be determined by these techniques.

    View details for PubMedID 14564717

Stanford Medicine Resources:

Footer Links: