Creed Stary

Publication Details

  • Glycolytic activation at the onset of contractions in isolated Xenopus laevis single myofibres EXPERIMENTAL PHYSIOLOGY Walsh, B., Stary, C. M., Howlett, R. A., Kelley, K. M., Hogan, M. C. 2008; 93 (9): 1076-1084


    Intracellular pH (pHi) was measured in isolated Xenopus laevis single myofibres at the onset of contractions, with and without glycolytic blockade, to investigate the time course of glycolytic activation. Single myofibres (n=8; CON) were incubated in 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein acetoyxmethyl ester (10 microM; for fluorescence measurement of pHi) and stimulated for 15 s at 0.67 Hz in anoxia in the absence (control condition; CON) and presence of a glycolytic inhibitor (1 mM iodoacetic acid; IAA). Intracellular pHi and tension were continuously recorded, and the differences in pHi between conditions were used to estimate the activation time of glycolysis. An immediate and steady increase in pHi (initial alkalosis) at the onset of contractions was similar between CON and IAA trials for the first 9 s of the contractile bout. However, from six contractions (approximately 10 s) throughout the remainder of the bout, IAA demonstrated a continued rise in pHi, in contrast to a progressive decrease in pHi in CON (P<0.05). These results demonstrate, with high temporal resolution, that glycolysis is activated within six contractions (10 s at 0.67 Hz) in single Xenopus skeletal muscle fibres.

    View details for DOI 10.1113/expphysiol.2008.042440

    View details for Web of Science ID 000258442700008

    View details for PubMedID 18515473

Stanford Medicine Resources:

Footer Links: