Lawrence Steinman

Publication Details

  • Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis NATURE BIOTECHNOLOGY Robinson, W. H., Fontoura, P., Lee, B. J., de Vegvar, H. E., Tom, J., Pedotti, R., DiGennaro, C. D., Mitchell, D. J., Fong, D., Ho, P. P., Ruiz, P. J., Maverakis, E., Stevens, D. B., Bernard, C. C., Martin, R., Kuchroo, V. K., van Noort, J. M., Genain, C. P., Amor, S., Olsson, T., Utz, P. J., Garren, H., Steinman, L. 2003; 21 (9): 1033-1039

    Abstract:

    The diversity of autoimmune responses poses a formidable challenge to the development of antigen-specific tolerizing therapy. We developed 'myelin proteome' microarrays to profile the evolution of autoantibody responses in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS). Increased diversity of autoantibody responses in acute EAE predicted a more severe clinical course. Chronic EAE was associated with previously undescribed extensive intra- and intermolecular epitope spreading of autoreactive B-cell responses. Array analysis of autoantigens targeted in acute EAE was used to guide the choice of autoantigen cDNAs to be incorporated into expression plasmids so as to generate tolerizing vaccines. Tolerizing DNA vaccines encoding a greater number of array-determined myelin targets proved superior in treating established EAE and reduced epitope spreading of autoreactive B-cell responses. Proteomic monitoring of autoantibody responses provides a useful approach to monitor autoimmune disease and to develop and tailor disease- and patient-specific tolerizing DNA vaccines.

    View details for DOI 10.1038/nbt859

    View details for Web of Science ID 000185051000035

    View details for PubMedID 12910246

Stanford Medicine Resources:

Footer Links: