Gary Schoolnik

Publication Details

  • Role of the extracytoplasmic-function sigma Factor sigma(H) in Mycobacterium tuberculosis global gene expression MOLECULAR MICROBIOLOGY Manganelli, R., Voskuil, M. I., SCHOOLNIK, G. K., Dubnau, E., Gomez, M., Smith, I. 2002; 45 (2): 365-374

    Abstract:

    Like other bacterial species, Mycobacterium tuberculosis has multiple sigma (sigma) factors encoded in its genome. In previously published work, we and others have shown that mutations in some of these transcriptional activators render M. tuberculosis sensitive to various environmental stresses and, in some cases, cause attenuated virulence phenotypes. In this paper, we characterize a M. tuberculosis mutant lacking the ECF sigma factor sigma(H). This mutant was more sensitive than the wild type to heat shock and to various oxidative stresses, but did not show decreased ability to grow inside macrophages. Using quantitative reverse transcription-PCR and microarray technology, we have started to define the sigma(H) regulon and its involvement in the global regulation of the response to heat shock and the thiol-specific oxidizing agent diamide. We identified 48 genes whose expression increased after exposure of M. tuberculosis to diamide; out of these, 39 were not induced in the sigH mutant, showing their direct or indirect dependence on sigma(H). Some of these genes encode proteins whose predicted function is related to thiol metabolism, such as thioredoxin, thioredoxin reductase and enzymes involved in cysteine and molybdopterine biosynthesis. Other genes under sigma(H) control encode transcriptional regulators such as sigB, sigE, and sigH itself.

    View details for Web of Science ID 000176907100008

    View details for PubMedID 12123450

Stanford Medicine Resources:

Footer Links: