James Ford

Publication Details

  • Hepatitis B x protein inhibits p53-dependent DNA repair in primary mouse hepatocytes JOURNAL OF BIOLOGICAL CHEMISTRY Prost, S., Ford, J. M., Taylor, G., Doig, J., Harrison, D. J. 1998; 273 (50): 33327-33332

    Abstract:

    The mechanisms by which the hepatitis B x protein (HBx) contributes to hepatocarcinogenesis remain unclear. However, interaction with the tumor suppressor gene p53 and inhibition of p53-dependent cellular functions, including nucleotide excision repair, could be central to this process. We studied the levels of global repair (removal of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts) and transcription-coupled repair (removal of CPDs in both strands of the dihydrofolate reductase gene) in primary wild-type and p53-null mouse hepatocytes. We show that global repair of CPDs appears to be more efficient in mouse hepatocytes than in other commonly studied rodent cells and approaches the levels of human cells and that p53 is required for global genomic DNA repair of CPDs but not for transcription-coupled repair. We then investigated the effect of HBx expression on hepatocyte nucleotide excision repair. We demonstrate that HBx expression affects DNA repair in a p53-dependent manner. Transient HBx expression reduces global DNA repair in wild-type cells to the level of p53-null hepatocytes and has no effect on the repair of a transfected damaged plasmid. Therefore, in viral hepatitis, the hepatitis B virus could inhibit the p53-dependent component of global repair leading, over time, to accumulation of genetic defects and fostering carcinogenesis.

    View details for Web of Science ID 000077462500036

    View details for PubMedID 9837906

Stanford Medicine Resources:

Footer Links: