William Rhine

Publication Details

  • Strategy for lipid suppression in lactate imaging using STIR-DQCT: A study of hypoxic-ischemic brain injury MAGNETIC RESONANCE IN MEDICINE Nakai, T., Rhine, W. D., Okada, T., Stevenson, D. K., Spielman, D. M. 1998; 40 (4): 629-632


    In vivo lactate detection using gradient enhanced double quantum coherence transfer (DQCT) was significantly improved by addition of short-time-inversion-recovery (STIR). Phantom studies demonstrated lipid suppression down to the background noise level with 33% loss of lactate signal. In vivo studies using a rabbit model of hypoxic and unilateral-ischemic brain injury showed reduction down to 29 +/- 11% in lipids with inversion times between 140 and 170 ms. Lactate signals on the ischemic side were 51 +/- 53% higher than the nonischemic side at the peak of hypoxia. STIR-DQCT can be a useful robust method of obtaining metabolic maps of lactate in vivo.

    View details for Web of Science ID 000076080900015

    View details for PubMedID 9771580

Stanford Medicine Resources:

Footer Links: