Phillip Garfin

Publication Details

  • Prostacyclin release by rat cardiac fibroblasts - Inhibition of collagen expression HYPERTENSION Yu, H., Gallagher, A. M., Garfin, P. M., Printz, M. P. 1997; 30 (5): 1047-1053

    Abstract:

    Cardiac fibroblasts, as the source of extracellular matrix for the left ventricle, subserve important functions to cardiac remodeling and fibrotic development following myocardial infarction or with pressure-overload cardiac hypertrophy. The fibroblast may be the target cell for angiotensin-converting enzyme inhibitors (ACEI) that are cardioprotective and reverse collagen deposition and remodeling but whose mechanisms of action remain controversial. Because we previously documented phenotypic differences between cardiac fibroblasts from the spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) left ventricle, the present study evaluated whether phenotypic differences also exist in the release of endogenous arachidonic acid metabolites or in the activation of phospholipase D, and the importance of observed differences to the formation of collagen and the mechanism of action of ACEI. The experimental design compared endogenous sources of arachidonic acid with exogenous prelabeling of cells. Angiotensin II stimulated greater arachidonic acid release than bradykinin, and WKY cells were more responsive than SHR. The major prostanoid formed by cardiac fibroblasts was prostaglandin I2 (PGI2), with more prostacyclin production by WKY cells than SHR cells both under nonstimulated conditions and in response to angiotensin II or bradykinin. Beraprost, a PGI2 analogue, was shown to decrease growth rate and DNA synthesis of fibroblasts and to inhibit mRNA expression for collagen types I and III, with SHR cells being less responsive to beraprost than WKY cells. These results potentially implicate eicosanoid metabolism, particularly PGI2, in collagen formation, fibrotic development, and cardiac remodeling, and they imply that the SHR genetic hypertension model may be predisposed to excess cardiac fibrosis.

    View details for Web of Science ID A1997YE99000008

    View details for PubMedID 9369254

Stanford Medicine Resources:

Footer Links: