Fredric Kraemer

Publication Details

  • Isoproterenol decreases LDL receptor expression in rat adipose cells: Activation of cyclic AMP-dependent proteolysis JOURNAL OF LIPID RESEARCH Kraemer, F. B., Natu, V., SINGHBIST, A., Patel, S., KOMAROMY, M. C., Medicherla, S., Azhar, S., Sztalryd, C. 1996; 37 (2): 237-249

    Abstract:

    The low density lipoprotein (LDL) receptor is part of a family of proteins that mediate the uptake of lipoproteins into cells. In this paper we have demonstrated the over-expression in E. coli of a rat LDL receptor fusion protein that contains the region of the receptor sharing homology with the EGF precursor. The fusion protein was utilized to immunize rabbits and successfully generate antibodies that recognize the intact LDL receptor. These anti-LDL receptor/fusion protein antibodies were used to examine the effects of cyclic AMP on the expression of LDL receptors in isolated rat adipocytes. Incubation of adipocytes with isoproterenol caused a dose-dependent diminution in intact LDL receptors in the plasma membrane with the concomitant appearance of smaller immunoreactive proteins. Pulse-chase experiments demonstrated that isoproterenol rapidly shortened the initial half-life of intact, immunoprecipitable LDL receptors in the plasma membrane. The effects of isoproterenol on LDL receptor expression were mimicked by forskolin, by an analog of cyclic AMP, and by ACTH. In contrast, incubation with propranolol blocked the effects of isoproterenol on LDL receptor expression. While antioxidants and several different protease inhibitors had no effects, N-acetyl-leucine-leucine-methionine (ALLM) was able to prevent the isoproterenol-induced effects on LDL receptors. Thus, it appears that agents acting via cyclic AMP cause a rapid decrease in LDL receptors in the plasma membranes of isolated adipose cells due to the apparent stimulation of an ALLM-sensitive protease that degrades the LDL receptor. These results suggest a novel mechanism for the posttranscriptional regulation of LDL receptor expression in adipocytes.

    View details for Web of Science ID A1996TZ91000003

    View details for PubMedID 9026523

Stanford Medicine Resources:

Footer Links: