Linda Boxer, MD, PhD

Publication Details

  • MYB BINDING-SITES MEDIATE NEGATIVE REGULATION OF C-MYB EXPRESSION IN T-CELL LINES BLOOD GUERRA, J., Withers, D. A., Boxer, L. M. 1995; 86 (5): 1873-1880

    Abstract:

    In hematopoietic cell development, the c-myb transcription factor plays an important role. c-myb mRNA is expressed at high levels in immature proliferating cells and in leukemic cells. We have investigated the regulatory role of Myb protein binding to the human c-myb promoter. Three Myb binding sites have been described at approximately 600 bp upstream of the cap site. By transient transfection assays in hematopoietic cell lines, we found that deletion of the previously defined most 5' Myb binding site had no effect on activity, whereas deletion of the region containing the remaining two Myb binding sites resulted in an increase in activity in both a T-cell line and a myeloid cell line. To specifically test the importance of these two Myb binding sites, the activity of three-point mutation constructs was measured. Mutation of either Myb binding site resulted in an increase in activity compared with the wild-type promoter in T cells. Mutation of both sites produced even higher activity. Transfection of the Myb site mutants into the myeloid cell line resulted in no change in activity compared with the wild type construct. Results from gel shift analysis, UV cross-linking, and Western blots showed that both c-Myb and B-Myb bound to the Myb I and II sites. We conclude that the Myb family proteins negatively regulate c-myb expression in T-cell lines in contrast to the positive regulation via these sites, which has been shown in fibroblasts. In addition, in a myeloid cell line, the Myb binding sites are nonfunctional.

    View details for Web of Science ID A1995RT38600026

    View details for PubMedID 7655015

Stanford Medicine Resources:

Footer Links: