Steven Foung

Publication Details

  • PRODUCTION OF FUNCTIONAL HUMAN T-T-HYBRIDOMAS IN SELECTION MEDIUM LACKING AMINOPTERIN AND THYMIDINE PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES Foung, S. K., Sasaki, D. T., GRUMET, F. C., Engleman, E. G. 1982; 79 (23): 7484-7488

    Abstract:

    The production of hybridomas between immunologically activated T cells and malignant T-cell lines offers a potentially unlimited source of soluble T-cell-derived products. Recently, human T-T hybrids have been described; however, their use has been hampered by slow growth and chromosomal instability due at least in part to the presence of thymidine in the traditional hypoxanthine/aminopterin/thymidine (HAT) selection medium. In this report, we describe the development of a rapidly growing hypoxanthine phosphoribosyltransferase-deficient human T-cell line designated J3R7, the use of azaserine/hypoxanthine (AH) medium as an alternative selection medium to HAT medium, and the production of functional T-T hybrids by using the J3R7 line and the AH selection technique. Hybrids selected in AH medium were 4-fold greater in number and 3-fold faster in growth rate than hybrids grown in HAT medium. No stable clones were obtained from HAT cultures whereas AH-derived hybrids could be readily cloned by the method of limiting dilution. Evidence for hybridization included (i) the presence of approximately twice the number of chromosomes in hybrids than in J3R7 cells; (ii) the presence on hybrid cells of the Leu-3a surface antigen, present on normal helper T cells but not on J3R7 cells; (iii) the expression of HLA antigens of both the normal T-cell partner and the J3R7 line; and (iv) the constitutive secretion of interleukin 2 from multiple hybrid clones but not from the J3R7 cell line. Thus far, these clones have maintained their rapid growth, chromosome number, surface phenotype, and constitutive secretion of interleukin 2 for 4 months.

    View details for Web of Science ID A1982PT40700084

    View details for PubMedID 6984190

Stanford Medicine Resources:

Footer Links: