Beverly S. Mitchell, M.D.

Publication Details

  • PURINOGENIC IMMUNODEFICIENCY DISEASES - CLINICAL-FEATURES AND MOLECULAR MECHANISMS ANNALS OF INTERNAL MEDICINE Mitchell, B. S., Kelley, W. N. 1980; 92 (6): 826-831

    Abstract:

    Deficiencies of two enzymes that catalyze sequential reactions in the purine catabolic pathway have been causally associated with immunodeficiency states. Adenosine deaminase (ADA) deficiency results in severe combined immunodeficiency disease, while purine nucleoside phosphorylase (PNP) deficiency results in an isolated T-cell defect. Recent work in this area has provided major new insights into the molecular pathology of these syndromes. Deoxyadenosine and deoxyguanosine, substrates that accumulate in ADA and deoxyguanosine, substrates that accumulate in ADA and PNP deficiency, respectively, appear to be selectively phosphorylated by lymphoid cells to the corresponding deoxynucleoside triphosphate, resulting in inhibition of DNA synthesis in these cells. Both deoxynucleosides are far more toxic to cultured T lymphoblasts than to B lymphoblasts. Adenosine and deoxyadenosine may have additional lymphotoxic effects mediated by inhibition of essential methylation reactions. These observations help to explain the immunologic manifestations of ADA and PNP deficiency. Perhaps more important, they lay the foundation for the use of deoxynucleosides or enzyme inhibitors, or both, as selective immunosuppressive and chemotherapeutic agents.

    View details for Web of Science ID A1980JW13400019

    View details for PubMedID 6247948

Stanford Medicine Resources:

Footer Links: