David N. Cornfield

Publication Details

  • Oxygen-induced fetal pulmonary vasodilation is mediated by intracellular calcium activation of K-Ca channels AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY Porter, V. A., Rhodes, M. T., Reeve, H. L., Cornfield, D. N. 2001; 281 (6): L1379-L1385

    Abstract:

    O(2) sensing in fetal pulmonary artery smooth muscle is critically important in the successful transition to air breathing at birth. However, the mechanism by which the fetal pulmonary vasculature senses and responds to an acute increase in O(2) tension is not known. Isolated fetal pulmonary artery smooth muscle cells were kept in primary culture for 5-14 days in a hypoxic environment (20-30 mmHg). These cells showed a 25.1 +/- 1.7% decrease in intracellular calcium in response to an acute increase in O(2) tension. Low concentrations of caffeine (0.5 mM) and diltiazem also decreased intracellular calcium. The decrease in intracellular calcium concentration in response to increasing O(2) was inhibited by iberiotoxin and ryanodine. Freshly isolated fetal pulmonary artery smooth muscle cells exhibited "spontaneous transient outward currents," indicative of intracellular calcium spark activation of calcium-sensitive potassium channels. The frequency of spontaneous transient outward currents increased when O(2) tension was increased to normoxic levels. Increasing fetal pulmonary O(2) tension in acutely instrumented fetal sheep increased fetal pulmonary blood flow. Ryanodine attenuated O(2)-induced pulmonary vasodilation. This study demonstrates that fetal pulmonary vascular smooth muscle cells are capable of responding to an acute increase in O(2) tension and that this O(2) response is mediated by intracellular calcium activation of calcium-sensitive potassium channels.

    View details for Web of Science ID 000172094400010

    View details for PubMedID 11704533

Stanford Medicine Resources:

Footer Links: