Hugh O'Brodovich

Publication Details

  • Structure and hormone responsiveness of the gene encoding the alpha-subunit of the rat amiloride-sensitive epithelial sodium channel AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY Otulakowski, G., Rafii, B., Bremner, H. R., O'Brodovich, H. 1999; 20 (5): 1028-1040

    Abstract:

    The rat amiloride-sensitive epithelial sodium channel (rENaC) is the rate-limiting step for vectorial transport of Na+ across tight epithelia. The complex is composed of three subunits, alpha, beta, and gamma. Expression of the subunits has been shown to be tissue-specific and developmentally and hormonally regulated. To study mechanisms involved in transcriptional regulation of alpharENaC, we determined the genomic organization of the alpharENaC gene. By 5' rapid amplification of cDNA ends and primer extension, two transcriptional start sites were detected 453 base pairs (bp) apart, resulting in alternative 5' untranslated region (UTR) lengths of 515 or 62 bp. The longer 5' UTR is more prevalent in fetal lung than in adult lung or kidney. The 5' untranslated and coding regions are contained within 12 exons, with the translation start site located within the first exon. Sequence analysis of approximately 1,500 bp of 5' flanking DNA identified putative binding sites for transcription factors PEA3, SP1, AP-1, nuclear factor-kappaB, and thyroid and glucocorticoid receptors. alpharENaC promoter-reporter gene constructs produced low levels of reporter gene activity in transiently transfected cells, which could be increased by dexamethasone (DEX) treatment. Tri-iodothyronine treatment alone had no effect but potentiated stimulation by DEX.

    View details for Web of Science ID 000080388900022

    View details for PubMedID 10226074

Stanford Medicine Resources:

Footer Links: