Steven Sanislo

Publication Details

  • Pulsed Electron Avalanche Knife (PEAK) for intraocular surgery INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE Palanker, D. V., MILLER, J. M., Marmor, M. F., Sanislo, S. R., Huie, P., Blumenkranz, M. S. 2001; 42 (11): 2673-2678

    Abstract:

    To develop a better and more economical instrument for precise, tractionless, "cold" cutting during intraocular surgery. The use of highly localized electric fields rather than laser light as the means of tissue dissection was investigated.A high electric field at the tip of a fine wire can, like lasers, initiate plasma formation. Micrometer-length plasma streamers are generated when an insulated 25 micron (microm) wire, exposed to physiological medium at one end, is subjected to nanosecond electrical pulses between 1 and 8 kV in magnitude. The explosive evaporation of water in the vicinity of these streamers cuts soft tissue without heat deposition into surrounding material (cold cutting). Streamers of plasma and the dynamics of water evaporation were imaged using an inverted microscope and fast flash photography. Cutting effectiveness was evaluated on both polyacrylamide gels, on different tissues from excised bovine eyes, and in vivo on rabbit retina. Standard histology techniques were used to examine the tissue.Electric pulses with energies between 150 and 670 microJ produced plasma streamers in saline between 10 and 200 microm in length. Application of electric discharges to dense (10%) polyacrylamide gels resulted in fracturing of the gel without ejection of bulk material. In both dense and softer (6%) gels, layer by layer shaving was possible with pulse energy rather than number of pulses as the determinant of ultimate cutting depth. The instrument made precise partial or full-thickness cuts of retina, iris, lens, and lens capsule without any evidence of thermal damage. Because different tissues require distinct energies for dissection, tissue-selective cutting on complex structures can be performed if the appropriate pulse energies are used; for example, retina can be dissected without damage to the major retinal vessels.This instrument, called the Pulsed Electron Avalanche Knife (PEAK), can quickly and precisely cut intraocular tissues without traction. The small delivery probe and modest cost make it promising for many ophthalmic applications, including retinal, cataract, and glaucoma surgery. In addition, the instrument may be useful in nonophthalmic procedures such as intravascular surgery and neurosurgery.

    View details for Web of Science ID 000171433300037

    View details for PubMedID 11581215

Stanford Medicine Resources:

Footer Links: