Lawrence Steinman

Publication Details

  • INVOLVEMENT OF DISTINCT MURINE T-CELL RECEPTORS IN THE AUTOIMMUNE ENCEPHALITOGENIC RESPONSE TO NESTED EPITOPES OF MYELIN BASIC-PROTEIN PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Sakai, K., Sinha, A. A., Mitchell, D. J., Zamvil, S. S., Rothbard, J. B., McDevitt, H. O., Steinman, L. 1988; 85 (22): 8608-8612

    Abstract:

    The peptide p89-101 (Val-His-Phe-Phe-Lys-Asn-Ile-Val-Thr-Pro-Arg-Thr-Pro) of myelin basic protein is encephalitogenic in mice expressing H-2q and H-2s antigens. Six of 13 encephalitogen-specific T-cell clones were shown to express the variable beta-chain (V beta) 17a gene product (KJ23a+), whereas seven clones were KJ23a-. Both KJ23a+ and KJ23a- subpopulations were encephalitogenic in SJL/J mice when adoptively transferred. Depletion of KJ23a+ cells in vivo with the administration of the antibody KJ23a suppresses experimental allergic encephalomyelitis induced with KJ23a+ T-cell lines. However, experimental allergic encephalomyelitis induced with either (i) encephalitogenic peptide p89-101, (ii) intact myelin basic protein, or (iii) KJ23a- T cells reactive to p89-101 cannot be prevented with monoclonal antibody KJ23a. These data indicate that in spite of the V beta 17a gene expression in a relatively large proportion of p89-101-specific T cells, such V beta gene use is not essential for the induction of experimental allergic encephalomyelitis in SJL/J mice. These results contrast with the predominance of V beta gene use (V beta 8.2) in T cells reactive to the encephalitogenic fragment (pR1-11) in PL/J mice. One reason for this lack of dominant use of a particular T-cell receptor V beta gene family in the autoimmune response to myelin basic protein in SJL/J mice stems from the observation that two encephalitogenic epitopes exist in p89-101. KJ23a- T cells are stimulated by the deleted peptide p89-100, whereas KJ23a+ T cells are not. Thus, in the response to an encephalitogenic fragment of myelin basic protein containing two nested epitopes, at least two distinct T-cell receptor V beta genes are expressed. These distinct T-cell subpopulations can each trigger experimental allergic encephalomyelitis. These findings have implications for therapy of autoimmune disease with antibodies to the T-cell receptor gene products.

    View details for Web of Science ID A1988Q990500050

    View details for PubMedID 2460872

Stanford Medicine Resources:

Footer Links: