Stuart Goodman, MD, PhD

Publication Details

  • Role of direct estrogen receptor signaling in wear particle-induced osteolysis BIOMATERIALS Nich, C., Rao, A. J., Valladares, R. D., Li, C., Christman, J. E., Antonios, J. K., Yao, Z., Zwingenberger, S., Petite, H., Hamadouche, M., Goodman, S. B. 2013; 34 (3): 641-650

    Abstract:

    Estrogen withdrawal following surgical ovariectomy was recently shown to mitigate particle-induced osteolysis in the murine calvarial model. Currently, we hypothesize that estrogen receptors (ERs) were involved in this paradoxical phenomenon. To test this hypothesis, we first evaluated polyethylene (PE) particle-induced osteolysis in the murine calvarial model, using wild type (WT) C57BL6J female mice, ER? deficient (ER?KO) mice, and WT mice either treated with 17?-estradiol (E2) or with the ER pan-antagonist ICI 182,780. According to micro-CT and histomorphometry, we showed that bone resorption was consistently altered in both ER?KO and ICI 182,780 treated mice as compared to WT and E2 groups. Then, we demonstrated that ER disruption consistently decreased both PE and polymethylmethacrylate (PMMA) particle-induced production of TNF-? by murine macrophages in vitro. Similar results were obtained following ER blockade using ICI 182,780 in RAW 264.7 and WT macrophages. ER disruption and pre treatment with ICI 182,780 resulted in a consistent down-regulation of particle-induced TNF-? mRNA expression relative to WT macrophages or untreated RAW cells. These results indicate that the response to wear particles involves estrogen receptors in female mice, as part of macrophage activation. Estrogen receptors may be considered as a future therapeutic target for particle-induced osteolysis.

    View details for DOI 10.1016/j.biomaterials.2012.10.030

    View details for Web of Science ID 000312759800004

    View details for PubMedID 23113918

Stanford Medicine Resources:

Footer Links: