Joseph C. Wu

Publication Details

  • Sacrificial layer technique for axial force post assay of immature cardiomyocytes BIOMEDICAL MICRODEVICES Taylor, R. E., Kim, K., Sun, N., Park, S., Sim, J. Y., Fajardo, G., Bernstein, D., Wu, J. C., Pruitt, B. L. 2013; 15 (1): 171-181

    Abstract:

    Immature primary and stem cell-derived cardiomyocytes provide useful models for fundamental studies of heart development and cardiac disease, and offer potential for patient specific drug testing and differentiation protocols aimed at cardiac grafts. To assess their potential for augmenting heart function, and to gain insight into cardiac growth and disease, tissue engineers must quantify the contractile forces of these single cells. Currently, axial contractile forces of isolated adult heart cells can only be measured by two-point methods such as carbon fiber techniques, which cannot be applied to neonatal and stem cell-derived heart cells because they are more difficult to handle and lack a persistent shape. Here we present a novel axial technique for measuring the contractile forces of isolated immature cardiomyocytes. We overcome cell manipulation and patterning challenges by using a thermoresponsive sacrificial support layer in conjunction with arrays of widely separated elastomeric microposts. Our approach has the potential to be high-throughput, is functionally analogous to current gold-standard axial force assays for adult heart cells, and prescribes elongated cell shapes without protein patterning. Finally, we calibrate these force posts with piezoresistive cantilevers to dramatically reduce measurement error typical for soft polymer-based force assays. We report quantitative measurements of peak contractile forces up to 146 nN with post stiffness standard error (26 nN) far better than that based on geometry and stiffness estimates alone. The addition of sacrificial layers to future 2D and 3D cell culture platforms will enable improved cell placement and the complex suspension of cells across 3D constructs.

    View details for DOI 10.1007/s10544-012-9710-3

    View details for Web of Science ID 000313517800018

    View details for PubMedID 23007494

Stanford Medicine Resources:

Footer Links: