Lawrence Steinman, MD

Publication Details

  • Reversal of Paralysis and Reduced Inflammation from Peripheral Administration of beta-Amyloid in T(H)1 and T(H)17 Versions of Experimental Autoimmune Encephalomyelitis SCIENCE TRANSLATIONAL MEDICINE Grant, J. L., Ghosn, E. E., Axtell, R. C., Herges, K., Kuipers, H. F., Woodling, N. S., Andreasson, K., Herzenberg, L. A., Herzenberg, L. A., Steinman, L. 2012; 4 (145)


    ?-Amyloid 42 (A?42) and ?-amyloid 40 (A?40), major components of senile plaque deposits in Alzheimer's disease, are considered neurotoxic and proinflammatory. In multiple sclerosis, A?42 is up-regulated in brain lesions and damaged axons. We found, unexpectedly, that treatment with either A?42 or A?40 peptides reduced motor paralysis and brain inflammation in four different models of experimental autoimmune encephalomyelitis (EAE) with attenuation of motor paralysis, reduction of inflammatory lesions in the central nervous system (CNS), and suppression of lymphocyte activation. A?42 and A?40 treatments were effective in reducing ongoing paralysis induced with adoptive transfer of either autoreactive T helper 1 (T(H)1) or T(H)17 cells. High-dimensional 14-parameter flow cytometry of peripheral immune cell populations after in vivo A?42 and A?40 treatment revealed substantial modulations in the percentage of lymphoid and myeloid subsets during EAE. Major proinflammatory cytokines and chemokines were reduced in the blood after A? peptide treatment. Protection conferred by A? treatment did not require its delivery to the brain: Adoptive transfer with lymphocytes from donors treated with A?42 attenuated EAE in wild-type recipient mice, and A? deposition in the brain was not detected in treated EAE mice by immunohistochemical analysis. In contrast to the improvement in EAE with A? treatment, EAE was worse in mice with genetic deletion of the amyloid precursor protein. Therefore, in the absence of A?, there is exacerbated clinical EAE disease progression. Because A?42 and A?40 ameliorate experimental autoimmune inflammation targeting the CNS, we might now consider its potential anti-inflammatory role in other neuropathological conditions.

    View details for DOI 10.1126/scitranslmed.3004145

    View details for Web of Science ID 000307159500004

    View details for PubMedID 22855462

Stanford Medicine Resources:

Footer Links: