James Chang, MD

Publication Details

  • Tissue-engineered Collateral Ligament Composite Allografts for Scapholunate Ligament Reconstruction: An Experimental Study JOURNAL OF HAND SURGERY-AMERICAN VOLUME Endress, R., Woon, C. Y., Farnebo, S. J., Behn, A., Bronstein, J., Pham, H., Yan, X., Gambhir, S. S., Chang, J. 2012; 37A (8): 1529-1537


    In patients with chronic scapholunate (SL) dissociation or dynamic instability, ligament repair is often not possible, and surgical reconstruction is indicated. The ideal graft ligament would recreate both anatomical and biomechanical properties of the dorsal scapholunate ligament (dorsal SLIL). The finger proximal interphalangeal joint (PIP joint) collateral ligament could possibly be a substitute ligament.We harvested human PIP joint collateral ligaments and SL ligaments from 15 cadaveric limbs. We recorded ligament length, width, and thickness, and measured the biomechanical properties (ultimate load, stiffness, and displacement to failure) of native dorsal SLIL, untreated collateral ligaments, decellularized collateral ligaments, and SL repairs with bone-collateral ligament-bone composite collateral ligament grafts. As proof of concept, we then reseeded decellularized bone-collateral ligament-bone composite grafts with green fluorescent protein-labeled adipo-derived mesenchymal stem cells and evaluated them histologically.There was no difference in ultimate load, stiffness, and displacement to failure among native dorsal SLIL, untreated and decellularized collateral ligaments, and SL repairs with tissue-engineered collateral ligament grafts. With pair-matched untreated and decellularized scaffolds, there was no difference in ultimate load or stiffness. However, decellularized ligaments revealed lower displacement to failure compared with untreated ligaments. There was no difference in displacement between decellularized ligaments and native dorsal SLIL. We successfully decellularized grafts with recently described techniques, and they could be similarly reseeded.Proximal interphalangeal joint collateral ligament-based bone-collateral ligament-bone composite allografts had biomechanical properties similar to those of native dorsal SLIL. Decellularization did not adversely affect material properties.These tissue-engineered grafts may offer surgeons another option for reconstruction of chronic SL instability.

    View details for DOI 10.1016/j.jhsa.2012.05.020

    View details for Web of Science ID 000307260200001

Stanford Medicine Resources:

Footer Links: