Helen Bronte-Stewart

Publication Details

  • DEFICITS IN VISUOSPATIAL PROCESSING CONTRIBUTE TO QUANTITATIVE MEASURES OF FREEZING OF GAIT IN PARKINSON'S DISEASE NEUROSCIENCE Nantel, J., McDonald, J. C., Tan, S., Bronte-Stewart, H. 2012; 221: 151-156

    Abstract:

    The aim of this study was to investigate whether an objective measure of freezing of gait (FOG) using a validated alternating stepping in place (SIP) task, is related to executive and/or visuospatial cognitive impairment in Parkinson's disease (PD).We studied prospectively 30 PD subjects with the Unified Parkinson's Disease Rating Scale (UPDRS) III, the FOGq, Trail Making Test Part B (TMTB), Wisconsin Card Sorting, Initiation/Perseveration, Matrix Reasoning (MR) and Block Design (BD). PD subjects performed three, 100s trials of alternative SIP while standing on two force platforms to assess the number and duration of freezing episodes (FE), SIP rhythmicity and symmetry.Freezers had larger cycle asymmetry and arrhythmicity than non-freezers (P<0.05). Performance on BD and MR tests differentiated freezers from non-freezers (P<0.04; P=0.001, respectively). BD performance negatively correlated with the FOGq total (P<0.05), the number and duration of FE (P<0.01), SIP arrhythmicity and asymmetry (P=0.01, P<0.05). MR performance negatively correlated with all FOGq #3 and total as well as SIP FE metrics (P?0.01), except for SIP asymmetry.Deficits in visuospatial perception and reasoning not in executive function differentiated freezers from non-freezers. Deficits in visuospatial processing negatively correlated with all SIP freeze metrics, whereas deficits in executive function were only correlated with SIP arrhythmicity, the FOGq total and the duration of freezing episodes. These results suggest that deficits in visuospatial processing to perform a motor task contribute to FOG and that different cognitive deficits may contribute to different aspects of freezing in PD. This is the first study to our knowledge that has compared metrics of freezing to cognitive tasks in the visuospatial and visual reasoning domains.

    View details for DOI 10.1016/j.neuroscience.2012.07.007

    View details for Web of Science ID 000308628100015

    View details for PubMedID 22796080

Stanford Medicine Resources:

Footer Links: