Daniel Rubin

Publication Details

  • Informatics in Radiology Improving Clinical Work Flow through an AIM Database: A Sample Web-based Lesion Tracking Application RADIOGRAPHICS Abajian, A. C., Levy, M., Rubin, D. L. 2012; 32 (5): 1543-1552

    Abstract:

    Quantitative assessments on images are crucial to clinical decision making, especially in cancer patients, in whom measurements of lesions are tracked over time. However, the potential value of quantitative approaches to imaging is impeded by the difficulty and time-intensive nature of compiling this information from prior studies and reporting corresponding information on current studies. The authors believe that the quantitative imaging work flow can be automated by making temporal data computationally accessible. In this article, they demonstrate the utility of the Annotation and Image Markup standard in a World Wide Web-based application that was developed to automatically summarize prior and current quantitative imaging measurements. The system calculates the Response Evaluation Criteria in Solid Tumors metric, along with several alternative indicators of cancer treatment response, by using the data stored in the annotation files. The application also allows the user to overlay the recorded metrics on the original images for visual inspection. Clinical evaluation of the system demonstrates its potential utility in accelerating the standard radiology work flow and in providing a means to evaluate alternative response metrics that are difficult to compute by hand. The system, which illustrates the utility of capturing quantitative information in a standard format and linking it to the image from which it was derived, could enhance quantitative imaging in clinical practice without adversely affecting the current work flow.

    View details for DOI 10.1148/rg.325115752

    View details for Web of Science ID 000308632900027

    View details for PubMedID 22745220

Stanford Medicine Resources:

Footer Links: