Ramin E. Beygui, MD

Publication Details

  • Drug Release from Electric-Field-Responsive Nanoparticles ACS NANO Ge, J., Neofytou, E., Cahill, T. J., Beygui, R. E., Zare, R. N. 2012; 6 (1): 227-233

    Abstract:

    We describe a new temperature and electric field dual-stimulus responsive nanoparticle system for programmed drug delivery. Nanoparticles of a conducting polymer (polypyrrole) are loaded with therapeutic pharmaceuticals and are subcutaneously localized in vivo with the assistance of a temperature-sensitive hydrogel (PLGA-PEG-PLGA). We have shown that drug release from the conductive nanoparticles is controlled by the application of a weak, external DC electric field. This approach represents a novel interactive drug delivery system that can show an externally tailored release profile with an excellent spatial, temporal, and dosage control.

    View details for DOI 10.1021/nn203430m

    View details for Web of Science ID 000299368300029

    View details for PubMedID 22111891

Stanford Medicine Resources:

Footer Links: