William Robinson

Publication Details

  • Chemerin158K Protein Is the Dominant Chemerin Isoform in Synovial and Cerebrospinal Fluids but Not in Plasma JOURNAL OF BIOLOGICAL CHEMISTRY Zhao, L., Yamaguchi, Y., Sharif, S., Du, X., Song, J. J., Lee, D. M., Recht, L. D., Robinson, W. H., Morser, J., Leung, L. L. 2011; 286 (45): 39520-39527

    Abstract:

    Chemerin is a chemoattractant involved in immunity that may also function as an adipokine. Chemerin circulates as an inactive precursor (chem163S), and its activation requires proteolytic cleavages at its C terminus, involving proteases involved in coagulation, fibrinolysis, and inflammation. However, the key proteolytic steps in prochemerin activation in vivo remain to be established. Previously, we have shown that C-terminal cleavage of chem163S by plasmin to chem158K, followed by a carboxypeptidase cleavage, leads to the most active isoform, chem157S. To identify and quantify the in vivo chemerin isoforms in biological specimens, we developed specific ELISAs for chem163S, chem158K, and chem157S, using antibodies raised against peptides from the C terminus of the different chemerin isoforms. We found that the mean plasma concentrations of chem163S, chem158K, and chem157S were 40 ± 7.9, 8.1 ± 2.9, and 0.7 ± 0.8 ng/ml, respectively. The total level of cleaved and noncleaved chemerins in cerebrospinal fluids was ?10% of plasma levels whereas it was elevated ?2-fold in synovial fluids from patients with arthritis. On the other hand, the fraction of cleaved chemerins was much higher in synovial fluid and cerebrospinal fluid samples than in plasma (?75%, 50%, and 18% respectively). Chem158K was the dominant chemerin isoform, and it was not generated by ex vivo processing, indicating that cleavage of prochemerin at position Lys-158, whether by plasmin or another serine protease, represents a major step in prochemerin activation in vivo. Our study provides the first direct evidence that chemerin undergoes extensive proteolytic processing in vivo, underlining the importance of measuring individual isoforms.

    View details for DOI 10.1074/jbc.M111.258954

    View details for Web of Science ID 000296759800069

    View details for PubMedID 21930706

Stanford Medicine Resources:

Footer Links: