Michael Longaker

Publication Details

  • Strategies for organ level tissue engineering ORGANOGENESIS Rustad, K. C., Sorkin, M., Levi, B., Longaker, M. T., Gurtner, G. C. 2010; 6 (3): 151-157

    Abstract:

    The field of tissue engineering has made considerable strides since it was first described in the late 1980s. The advent and subsequent boom in stem cell biology, emergence of novel technologies for biomaterial development and further understanding of developmental biology have contributed to this accelerated progress. However, continued efforts to translate tissue-engineering strategies into clinical therapies have been hampered by the problems associated with scaling up laboratory methods to produce large, complex tissues. The significant challenges faced by tissue engineers include the production of an intact vasculature within a tissue-engineered construct and recapitulation of the size and complexity of a whole organ. Here we review the basic components necessary for bioengineering organs-biomaterials, cells and bioactive molecules-and discuss various approaches for augmenting these principles to achieve organ level tissue engineering. Ultimately, the successful translation of tissue-engineered constructs into everyday clinical practice will depend upon the ability of the tissue engineer to "scale up" every aspect of the research and development process.

    View details for DOI 10.4161/org.6.3.12139

    View details for Web of Science ID 000290266200003

    View details for PubMedID 21197216

Stanford Medicine Resources:

Footer Links: